
644 MONTHLY WEATHER REV1 EW vel. 99, No. 8 

UDC 551.509.313 

AN N-CYCLE TIME-DIFFERENCING SCHEME FOR STEPWISE NUMERICAL lNTE 

EDWARD N. LORENZ 
Massachusetts Institute of Technology, Cambridge, Mass. 

ABSTRACT 

A tiie-differencing scheme consisting of an initializing step and N repetitions of a set of steps is proposed. For 
linear equations, the scheme is of Nth order. It is easily programmed and uses a minimal amount of storage space. 
The order may be changed by changing one parameter. An improved scheme is of Nth order even for nonlinear equa- 
tions, for N 54. 

1. THE BASIC N-CYCLE SCHEME 

There are many physical problems in which one may 
wish to solve a large number of simultaneous ordinary 
differential equations by numerical means. Among these 
problems are some where the single independent variable 
represents time and where one seeks future values of the 
dependent variables, given the present values. 

An obvious example is the many-body problem, but 
the situation also arises when one is interested in solving 
a smaller number of partial differential equations where 
the independent variables represent time and one or more 
space coordinates. As a first step in the solution, one may 
replace each function of time and space by a set of func- 
tions of time alone. Frequently, these functions are simply 
the values of the original variables at  a set of preselected 
locations in space or the coefficients in the expansions of 
the variables in a series of preselected orthogonal func- 
tions. m e n  the spatial configuration of the original vari- 
ables possesses considerable detail that is thought to be 
relevant, the required number of new variables may be 
large indeed. This is true, for example, in the case of nu- 
merical weather prediction, or numerical simulation of the 
atmosphere, where three-dimensional grids of 10,000 or 
more points are not uncommon. 

The use of numerical procedures generally demands also 
that the values of the variables be determined only at  a 
discrete set of times. In  some integration schemes used in 
numerical weather prediction, the values of the variables 
at  certain points are determined a t  certain times, while 
those a t  other points are determined at  other times. 
I n  other schemes, the values of all the variables are 
determined at  each time. I t  is the latter type of scheme 
that concerns us here. Under such a scheme, the choice of a 
procedure for replacing space derivatives by finite differ- 
ences effectively replaces each partial differential equation 
by a set of ordinary differential equations. The choice of a 
procedure for advancing forward in time then beconies a 
separate problem. 

Consider then t,he system of M ordinary differential 
equations 

dz,/dt = F&), i=l, . . . , M ,  (1) 

where by the argument z we mean the multiple argument 
zl, . . ., xnl. Let the values of z, be given at  some time to. 
We desire a procedure for approximating the values of 

at  time to + At where At is a reasonably small time 
increment. 

There are numerous well-known methods for accom- 
plishing this end. The simplest, but also one of the less 
accurate, is the uncentered-diff erence approximation 

zi(to f At) zi(to) + Ft(z ( to) )At .  ( 2 )  

Among those schemes affording better approximations are 
the higher order Runge-Eutta schemes (e.g., 'Henrici 1962). 
I n  the Mth-order scheme, the approximation for zi(to + 
At) when expanded in a power series in At agrees with the 
Taylor series expansion for the exact value of z,(to + At) 
through terms in AtN. The uncentered-diff erence scheme, 
incidentally, is equivalent to a first-order Runge-Kutta 
scheme. 

For the most general set of equations of the form of eq 
(I), the use of the uncentered-diff erence scheme requires 
that at  least 2M numbers be stored simultaneously in the 
memory of the computer at  some stagc of the computation; 
this is so because all M time derivatives F ,  must be 
evaluated before any of the variables 2, can be modified, 
since otherwise the wrong values of some variables would 
be used in evaluating the remaining derivatives. In  the 
straightforward application of some higher order schemes, 
considerably more than 2M numbers may have to be 
stored simultaneously; and if M is large, the procedure 
may tax the capacity of the computer. The procedure 
that we shall offer is the outcome of an attempt to use o, 

higher order scheme with a minimum use of storage space 
(specifically, without having to store any more numbers 
than would have to  be stored in using the uncentered- 
difference scheme). Actually, our procedure will prove to  
have other advantages including simplicity in program- 
ming, which will render it attractive even when M is 
small and storage space is not an important consideration. 

Our N-cycle scheme uses 2N constants co, . . ., C Z N - - 1 .  

I n  addition to the registers needed to store these constants 
and the space needed to evaluate but not store the func- 
tions Fi, the scheme uses 2M registers in which the con- 
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tents will be denoted by yl, . . ., y M  and zl, . . ., z,, 
and an additional register in which the contents will be 
denoted by k .  

Suppose that, initially, the values of yi are si(to) 
while those of zi are arbitrary. The algorithm for making 
the values of y i  equal to s i ( t o f A t )  contains an initializing 
step (0), and six steps (1-6) performed N times: 

0. Set k=O. 
1. Multiply zi by cPk/A1. 

3. Divide zi by czr+l /At .  

5 .  Add 1 to k .  
6. 

2. Add Fi(y) to zC. 

4. Add Z t  to yt. 

If k < N ,  return to step 1; if k = N ,  the procedure 
is completed. (Except for the simplest systems of equa- 
tions, most of the computation occurs in step 2 when 
evaluating Fi. ) 

The problem we now face if we are to  put the scheme to  
use is the choice of suitable constants eo, . . ., C2N-1. The 
simplest way of insuring that the final result will be 
independent of the initial arbitrary values of z t  is to let 
co=O, and we shall not consider any other possible choice. 
The remainder of this work is concerned with the choice 
of the remaining constants. 

2. THE SIMPLEST SCHEME 

Consider first the case where the differential eq (1) are 
linear. They may then be written 

axiat = AX (3) 

where X is a matrix of M rows and one column with 
elements si and A is a square matrix of order M in which 
the elements are constants. We may likewise let Y and Z 
denote matrices of M rows and one column with elements 
y i  and zt. Because eq (3) is linear, the values of Y and Z 
after k repetitions of steps 1-6 in the algorithm will be 
polynomials of degree k in At. We wish to choose the 
constants c j  so that, after N repetitions, 

N 

k=O 
Y= AkX(to)Atk/k! (4) 

Carrying out the algorithm and equating coefficients of 
Atk, we find that the 2 N -  1 constants c j  must satisfy the 
N equations 

c j = N ,  

The summation in the kth equation in eq (5) is over all 
those products of k distinct constants in which no two 
successive constants enter as factors. 

Since there are more unknowns than equations, we may 
expect a multiplicity of solutions. Hence, we may seek 
t o  extend the usefulness of the scheme by choosing solu- 
tions that possess further desirable properties. We there- 
fore let s t = A t / N  and seek values of the constants for 
which the value of Y after k repetitions of steps 1-6 will 
afford a fair approximation to X(t ,+ks t ) .  Specifically, we 
demand that the linear term in At be kN-‘AXat .  We find 
that this will be so if 

In  particular, cl=N. 
We now have more equations than constants so that 

conceivably there could be no solution, but actually a 
simple solution is 

and 

Although it is not immediately obvious, at  least lo  us, 
that eq (7a) and (7b) actually satisfy eq (5), it  is readily 
verified by induction that, after k repetitions of steps 1-6 

’ ( k - I ) !  ( N - l ) !  
z = ,  (I- I ) !  ( k -  Z)! N! Z = r ,  - A’XAt  ’ 

and 
AlXAt ‘ k!  (N-Z)! 

l=o Z! ( k - l ) !  N !  Y = C  (9) 

whereupon eq (4) follows when k = N .  
We thus obtain a very simple scheme. The constants 

c j  need not be determined in advance. It is sufficient to 
reserve two registers in which the contents mill be denoted 
by a and 6 and to store the values of l / A t  and 1/6t. The 
algorithm may then be restated as: 

0. Let u=O, b = I / s t .  
1. Replace z i  with uzi. 
2. Replace z i  mit8h z,+F,(y). 
3. Replace z i  with zi /b .  
4. Replace yi with yt+zi. 
5. 
6. 

Replace a with a - ( l / A t )  and b with b - ( l / A t ) .  
If b>O, return to  step 1;  if b=O, the procedure is 

completed. 

Since the constants c, need not be stored, all that is 
required to change the order of the scheme is a change in 
1/6t. The one-cycle scheme, incidentally, is nothing more 
than the uncen tered-difference approximation, and the 
two-cycle scheme is identical to the so-called “modified 

c,Ck=N(N-l), 
j<k-1 

c ~ c ~ c , = N ( N -  I)(N-2), ( 5 C )  
j<k- 1 4 - 2  

. . . . . . . . . . . . . . . . . . . . . . . .  
C1C3 . . CzN-I=N!  ( 5 N )  Euler method” (Henrici 1962). 
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3. AN ALTERNATIVE INTERPRETATION 
OF THE N-CYCLE SCHEME 

We have introduced At as the fundamental time incre- 
ment and have presented the preceding algorithm as an 
N-cycle scheme for advancing from to t o  to + At. Because 
the value of y r  after k cycles is an approximation to 
xi (to + kat), it  is also possible to look upon 6t as the funda- 
mental time increment. The algorithm then becomes 
effectively a one-cycle scheme for advancing from 
to + k6t t o  to + (k + l ) 6 t ,  which varies from step to  step 
and gives its most satisfactory approximations every 
Nth step. 

There are certain advantages to this interpretation. 
First, the amount of computation required to advance 
from to to t,, + At is proportional t o  N, but that required 
to advance from to t o  to + 6t is independent of N. With 
St as the time step, the total amount of computation is 
determined by the number of time steps. One may then 
switch to a higher order scheme without altering the 
amount of computation simply by increasing At. 

Perhaps more important, the maximum allowable value 
of A t  which will insure reasonable accuracy, and in par- 
ticular will not introduce computational instability, tends 
to increase with increasing N ;  whereas the maximum 
allowable value of 6t tends to be independent of N .  To 
justify this claim, we restrict our attention to equations 
in which true solutions neither approach infinity nor 
settle down to a steady state as time increases. This 
happens, for example, in the problem of numerical 
weather forecasting. 

Over a finite time interval, the solution may then be 
approximated by a superposition of periodic oscillations. 
I t  is generally recognized that, for a specified scheme, 
computational instability will result if At is too large a 
fraction of the shortest period of oscillation. Consider, for 
simplicity, a solution oscillating with the single period T ;  
it may be governed by the single complex equation 

dx/dt = 27riT-'~, (10) 

although x will, of course, appear as two real variables in 
the computer. At time to + At, the power series expansion 
in At Will be 

m 

x ( t o + A t ) = x  (2&/T)'x(to)Atk/k! (11) 
k=O 

If the N-cycle scheme is used to approximate x(to + At),  
the absolut,e value of Ihe leading term in the error will be 

E,=(2rAt/T)"'+'~(to)/(N+ l)! (12) 

Using Stirling's formula to approximate (N+l)!, we find 
that, in terms of at, 

EN- ( 2 4  N+ 1)) N/N+ 1),+' (27re6 t /T) ( t 9). ( 13) 

Noting that the factor (N/N+l)"'+' approaches l /e as 

N--t 03, we find lhat 

0 if 6 t I T / 2 r e  
N+ lim m E~=( 03 if 6t>T/27re. 

Unless 6t is a t  least comparable to  T / 2 n  and thus much 
larger than T / 2 ~ e ,  the leading term in the error will be the 
dominating term. It follows that, if 6t is less than about 
1/17 of the period of oscillation, the N-cycle scheme be- 
comes more and more accurate as N is increased. However, 
if 6t is greater than this amount, the scheme becomes more 
and more inaccurate. 

For a more general system, the scheme becomes in- 
creasingly accurate with increasing N if 6t is less than 1/17 
of the shortest period of oscillation. This conclusion is 
most readily justified when the system is linear. 

A basic time step St may therefore be chosen inde- 
pendently of any considerations of N .  Once it has been 
established that the value of 6t is suitable, further accuracy 
may be gained without affecting the total amount of com- 
putation by increasing At. 

I n  actual practice, the maximum allowable value of N 
may be limited by the computer's own round-off error, 
which has not been considered in the preceding develop- 
ment. When N is very large, the round-off error introduced 
at  certain stages of the N-cycle scheme may be amplified 
manyfold during subsequent stages; and the results may 
be rendered unacceptable. I n  the case of eq (lo), using 
fixed-point arithmetic, we have obtained excellent results 
with N = l 6  and worthless results with N=32. 

4. AN IMPROVED SCHEME 
When the differential eq (1) are nonlinear, the N-cycle 

scheme proves not to be of Nth order, for N>2. That is, 
the approximation for xi (to+At), when expanded in a 
power series in At, fails to agree with the Taylor series 
expansion 

m 

z,(to+At) = 2 (dkzt(to)/dt')At'/k! (15) 
k=O 

through terms in AtN. 
To examine the discrepancy, we note first that 

dXJd t = F, (164 

d2x,/dt2= F,, ,F,, (16b) 

d3xi/dt3=FtS 5, .2'jF&+ Fi, jF1. KFK, (16c) 

d4xi/dt4=Fi, 1. k ,  tF#'tF, +3Fi, 1. kFj, 2 ' Z t  
+Pi, # ' j ,  a, $'Z, + Ft, $5. fiF8, tFt, ( 16d) 

etc. Here, in the symbols Fi.j ,  F , , , , ,  etc., each subscript 
except the first denotes partial differentiation with respect 
to the variable having a similar subscript ; and summation 
over repeated subscripts is understood. When the equations 
are linear, the functions F,, are constants; and Ft,r,li, etc., 
vanish. 
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Again, it is not obvious that eq (19a) and (19b) satisfy 
eq (5 )  for all values of N ;  and we have actually verified 
that this is the case only for N S  8. 

The algorithm for the new N-cycle scheme is nearly as 
simple as that for the old one. Steps 0-4 are the same; and 

Upon carrying out the algorithm and comparing with 
eq (16a), (lsb), etc., we find that the approximation given 
by the three-cycle scheme is 

X * ( t o + A t ) w Z i + L  ax At+- 1 d2x* - At2 
d t  2 dt2 steps 5 and 6 are replaced by: 

5a. If a=O, replace a with a- (1/6t) and b with 
b- (1/6t) ; if a<O, do nothing. 

(17) 
+g(-@+T; 1 8 2 ,  1 Fi,j,kFjFk)t3+ * a * ' 

Likewise, the approximation given by the four-cycle 
scheme is 

5b. Replace a with a+ ( l / A t )  and b with b + ( l / A t ) .  
6. If a<O, return to step 1; if a=O, the procedure is 

Applying the new algortihm with N=3, we find that 
ax 1 a2x completed. 

x*(to+At)mxi+$ At+Z pi At2 

It thus appears that the three- and four-cycle schemes are 
actually only of second order. 

I t  must not be concluded on this account that the three- 
and four-cycle schemes are no better than the two-cycle 
scheme nor that they are necessarily greatly inferior to  
third-order and fourth-order Runge-Kutta schemes. One 
should not look upon the order of a scheme as the sole 
measure of its suitability. First of all, different schemes of 
the same order may differ greatly in accuracy. Having 
determined that a scheme is of Nth order, one also needs 
to know how greatly the terms in AtNf1  differ from the 
corresponding terms in the Taylor series expansion for 
xi (tO+W. 

Moreover, it is not obvious that, among schemes of 
different order, the higher order scheme is always prefer- 
able, especially if the equations are nonlinear. Certainly, 
the higher order scheme is more accurate if At is small 
enough. However, in such applications as numerical 
weather prediction, one does not ordinarily try to make At 
very small but is more likely to use as large a At as possible 
without introducing computational instability. In  this 
event, the terms in AtN+' could well contribute less than 
those in AtNf2,  or higher powers, to the total departure of 
the approximation to x,(t,+At) from the exact value. 

Our experience with the three- and four-cycle schemes 
applied to rather simple nonlinear systems suggests that 
they are much more accurate than the two-cycle scheme. 
Nevertheless, for some purposes, it is desirable to have an 
N-cycle scheme that is known to be of Nth order. We, 
therefore, seek other solutions of eq (5 ) .  

Among those solutions that also satisfy eq (6) appears 
to be the solution 

Thus, the new three-cycle scheme is also only of second 
order. However, comparing eq ( 2 0 )  and (17), we see that 
the error in the coefficient of AP made by the new three- 
cycle scheme is precisely the negative of that made by the 
old one. Likewise, the errors in the coefficients of both At? 
and At4 made by the new four-cycle scheme prove to be 
the negatives of the errors made by the old one. 

It is evident then that one can obtain a true third-order 
or fourth-order scheme by carrying out both three- or 
four-cycle schemes separately and then averaging the re- 
sults. We are not inclined to recommend such a procedure, 
however, since it would require twice the amount of com- 
putation, not to mention additional storage space. Never- 
theless, it  is possible that the errors in the coeficients of 
At3 and also At4 will tend to cancel when the old and new 
N-cycle schemes are used in alternate steps. We find, in 
fact, that a true third-order scheme for advancing from 
to to t3+2At may be obtained by advancing from t, to to 
+At with one three-cycle scheme and from to+At to to+ 
2At with the other. 

When the two four-cycle schemes are used in alternate 
steps, the result is a third-order rather than a fourth-order 
scheme for advancing two steps forward. However, the 
error in the coefficient of At4 made by following the new 
four-cycle scheme with the old one proves to be precisely 
the negative of the error made by following the old four- 
cycle scheme with the new one. There is the further possi- 
bility of following one combination of four-cycle schemes 
by the other combination; and we find that a true fourth- 
order scheme for advancing from to to t0+4At is obtained 
by advancing from to to h+At  with the old four-cycle 
scheme, from to+At to to+ 2At and then from t0+2At to to 
+3At with the new one, and from to+3At to t,,+4At with the 
old one. 

There are some problems where one may not desire the 
most accurate attainable solution of the ordinary differ- 
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entia1 equations being solved. This may be the case, for 
example, when the solutions contain high-frequency 
oscillations of limited physical interest, which may be 
conveniently suppressed by a suitably chosen time-diff er- 
encing scheme. 

There are also problems where a highly accurate solution 
is desired. I n  this event, for an easily programmed proce- 
dure, which for fixed 6t requires no more total computation 
time than the uncentered-diff erence approximation and 
no more storage space, we recommend the first N-cycle 
scheme with a moderately large value of N ,  particularly 
if the equations are essentially linear. For improved results 
when the equations are nonlinear, again without additional 
computation or storage, we suggest using the two four- 

cycle schemes, switching from one to the other after 
completing each odd-numbered step. 
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